ELSEVIER

Available online at www.sciencedirect.com

JOURNAL OF Approximation Theory

Journal of Approximation Theory 129 (2004) 217-229

http://www.elsevier.com/locate/jat

Characterisations of Chebyshev sets in c_0

Alexey R. Alimov*

Department of Mechanics and Mathematics, Moscow Lomonosov State University, Moscow 119992, Russia

Received 10 October 2003; accepted in revised form 27 April 2004

Communicated by Günther Nürnberger

Abstract

A subset $M \subset X$ of a normed linear space X is a Chebyshev set if, for every $x \in X$, the set of all nearest points from M to x is a singleton. We obtain a geometrical characterisation of approximatively compact Chebyshev sets in c_0 . Also, given an approximatively compact Chebyshev set M in c_0 and a coordinate affine subspace $H \subset c_0$ of finite codimension, if $M \cap H \neq \emptyset$, then $M \cap H$ is a Chebyshev set in H, where the norm on H is induced from c_0 . \bigcirc 2004 Published by Elsevier Inc.

MSC: 41A65

Keywords: Chebyshev set; Sun; co

1. Introduction

A subset $\emptyset \neq M \subset X$ of a normed linear space $(X, || \cdot ||)$ is a *Chebyshev set* if, for every $x \in X$, the set $P_M x = \{y \in M \mid ||x - y|| = \rho(x, M)\}$ of its nearest points from Mconsists of one point. Here $\rho(x, M) = \inf_{z \in M} ||x - z||$ is the distance from x to M. The best general references here are [5,17].

The paper contains two main results. Theorem 4 characterises approximatively compact Chebyshev sets in c_0 in terms of their intersections with coordinate affine

th The work was supported by the Russian Fund for Basic Researches, project 02-01-00248.

^{*}Corresponding address. Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Main Building, MSU, Vorobjovy Gory, GSP Moscow 119992, Russian Federation. Fax: +7-095-939-2090.

E-mail address: alimov@shade.msu.ru.

subspaces of finite codimension. Theorems 1–3 establish that an intersection of an approximatively compact Chebyshev set in c_0 with a coordinate affine subspace H of finite codimension or with a finite intersection H of coordinate half-spaces preserves its approximative properties with respect to H. Similar results for $\ell^{\infty}(n)$ were recently obtained by the author [2,3].

To formulate the main results of the paper the notion of a coordinate subspace will play an important role. Thus, we give the following definitions:

cAff_{$\omega-k$}(c_0) ($k \in \mathbb{Z}_+$) will denote the set of all coordinate affine subspaces of c_0 of finite codimension k; i.e., affine subspaces H which are parallel to a correspondent face F of the unit ball, codim F = k. In other words, $H = \{x \in c_0 \mid x_{i_1} = c_1, ..., x_{i_k} = c_k\}$ for some fixed set of indices $i_1, ..., i_k$ and set of constants $c_1, ..., c_k$;

 $\operatorname{cAff}_k(c_0)$ ($k \in \mathbb{N}$) will denote the set of all coordinate affine subspaces of c_0 of finite dimension k (see [3]); i.e., $\operatorname{cAff}_k(c_0)$ consists of affine subspaces of the following form: $\lim_{k \to 0} \{e_{i_1}, \dots, e_{i_k} \mid 1 \le i_1 < \dots < i_k < \infty\} + x$, $x \in c_0$; here e_1, e_2, \dots is the natural basis of c_0 .

If m > k and $H \in cAff_{\omega-k}(c_0)$, then $Q \in cAff_{\omega-m}(H)$ means that $Q \in cAff_{\omega-m}(c_0)$ and $Q \subset H$.

Further, let $M \subset c_0$, H be a coordinate affine subspace of c_0 and Q be a hyperplane in H. Then Q is said to be *locally tangential* to M in H (we write $Q \in \text{LocTan}(M)$) if

there exist a point $x \in H \cap M$ and its neighbourhood $\mathcal{O}(x)$ in H such that Q is a hyperplane of support to the set $M \cap \mathcal{O}(x)$ in H. The fact that the hyperplane Q is a supporting hyperplane to the set $M \cap H$ in subspace H will be denoted by $Q \in \operatorname{Tan}_{H}(M)$.

A point $x \in X$ is said to be a point of approximative compactness for a set $M \subset X$ if, for every sequence $(y_n)_{n \in \mathbb{N}} \subset M$ such that $||x - y_n|| \to \rho(x, M)$, there is a convergent subsequence $(y_{n_k}) \to y \in M$. A set $M \subset X$ is approximatively compact (AC), if every point $x \in X$ is a point of approximative compactness for M. By AC $(M) = AC_X(M)$ we will denote the set of all points of approximative compactness for the set M in the space X.

Also, let us denote $T(M) = \{x \in X \mid \text{card } P_M x = 1\}$; i.e., the set of points from X that have a unique nearest point from M; (here the letter "T" comes from the antiquated spelling of Chebyshev as Tschebysheff). Now a set M is Chebyshev in X, if T(M) = X. (See [5] and [12] for density and categorical properties of T(M), AC(M) and for other characteristics of approximatively compact sets.)

The importance of coordinate subspaces for approximation theory was shown in [3] for $X = \ell^{\infty}(n)$. Here we obtain similar results for c_0 . Theorem 1 states that for an approximatively compact Chebyshev set M in c_0 and for $H \in cAff_{\omega-k}(c_0), k \in \mathbb{Z}_+$, if $M \cap H \neq \emptyset$, then

 $H \subset \mathsf{T}(M \cap H),$

i.e., every point from the subspace H has a unique nearest point from the set $(M \cap H)$. In particular, $M \cap H$ is an approximatively compact Chebyshev sun (see Section 2) in H, the norm on H being induced from ℓ^{∞} -norm on c_0 . Theorems 2 and 3 state similar results for a finite intersection of coordinate affine half-spaces of finite codimension. The main result of the paper is Theorem 4 where a characterisation of approximatively compact Chebyshev sets in c_0 is given.

Theorem 4. Let $M \subset c_0$ be approximatively compact. Then M is a Chebyshev set in c_0 if and only if the following two conditions are satisfied:

- (a) the set $M \cap H$ is connected for all $k \in \mathbb{Z}_+$ and $H \in cAff_{\omega-k}(c_0)$; and
- (b) for all $k \in \mathbb{Z}_+$, $H \in cAff_{\omega-k}(c_0)$ and $Q \in cAff_{\omega-(k+1)}(H)$ the condition $Q \in locTan_H(M)$ implies that $Q \in Tan_H(M)$ and $Q \cap M$ is a singleton.

The similar characterisation for Chebyshev sets in $\ell^{\infty}(n)$ was obtained in [2,3].

The paper has the following structure. In Section 2 necessary definitions and auxiliary results are given, in Section 3 we study approximative properties of intersections of approximatively compact Chebyshev sets in c_0 with coordinate hyperplanes and layers of coordinate hyperplanes (Theorems 1–3). In Section 4 we present characterisations of approximatively compact Chebyshev sets in c_0 and in $\ell^{\infty}(n)$ (Theorem 4 and Theorem A).

2. Auxiliary results

As usual, if $x \in X$ and r > 0, then B(x, r), $\mathring{B}(x, r)$ and S(x, r) denote closed, open ball and sphere with centre x and radius r, respectively; to simplify notation we will also denote B = B(0, 1), $\mathring{B} = \mathring{B}(0, 1)$, S = S(0, 1).

For a convex set $C \subset X$ by ri C, rb C, cone(y, C) we denote relative interior, relative boundary and conical hull of C with respect to the point y: cone $(y, C) = \{\alpha c + (1 - \alpha)y \mid \alpha \ge 0, c \in C\}.$

The notion of a sun, introduced by Efimov and Stechkin, proved to be important in approximation theory. Let us recall that a set $M \subset X$ is a *sun* if, for every point $x \in X \setminus M$, there exists a point $y \in P_M x$ such that $y \in P_M[(1 - \lambda)y + \lambda x]$ for all $\lambda \ge 0$.

The following lemma establishes an important property of suns: a point not lying in a sun can be separated from it by a convex cone, namely, by the supporting cone $\mathring{K}(y, x)$, two equivalent definitions of which are given below (here $x, y \in X, x \neq y$) [13,17, Chapter 3]:

$$\mathring{K}(y,x) = \bigcup_{\lambda>0} \mathring{B}(\lambda x + (1-\lambda)y,\lambda||x-y||),$$
(1)

$$\mathring{K}(y,x) = \{ z \in X \mid [z,y] \cap \mathring{B}(x, ||x-y||) \neq \emptyset \}.$$
(2)

Lemma A (Oschman [13], see also Vlasov [17, Chapter 3]). A set M is a sun in X if and only if, for all $x \in X \setminus M$, there exists $y \in P_M x$ such that $\mathring{K}(y, x) \cap M = \emptyset$.

It is a well-known fact that every Chebyshev set in a finite-dimensional normed linear space is a sun (Chebyshev sets which are suns are also called Chebyshev suns);

in infinite-dimensional spaces this is no longer true (see e.g. [8,11,17, Chapter 4]). However, under additional assumptions on a Chebyshev set M or on a space X it is possible to prove solar properties of $M \subset X$. The classical result of Vlasov [17, Theorem 4.13] establishes solar properties of boundedly compact (BC) Chebyshev sets in Banach spaces. (A ~ set M is boundedly compact if $M \cap B(x, r)$ is compact for every x and r > 0) Moreover, a locally compact Chebyshev set with a continuous metric projection is a sun [11,16], see also [14]. (A set M is locally compact (LC) if, for every $x \in M$, there is an $\varepsilon > 0$ such that $B(x, \varepsilon) \cap M$ is compact.)

It is clear that $(BC) \subset (LC) \cap (AC)$, $(AC) \not\subset (LC)$, $(LC) \not\subset (AC)$. We note that an approximatively compact Chebyshev set *M* has a continuous metric projection [17, Corollary 2.2].

It is interesting to know in which spaces X

An approximatively compact Chebyshev set is a sun. (3)

The following result (see e.g. [17, Theorem 4.18]) allows us to establish (3) in spaces which satisfy the following condition (4).

Lemma B (Brosowski and Deutsch). Suppose that the space X satisfies the condition

$$\forall p \in S \quad \mathring{K}(p,0) \subset \bigcup \{ \mathring{K}(p,y) \mid y \in S, \ p \notin S \cap \mathring{K}(p,y) \}.$$

$$\tag{4}$$

Given a Chebyshev set $M \subset X$, suppose also that for each $x \notin M$ the restriction of the metric projection P_M to the ray $\{\lambda x + (1 - \lambda)P_M x \mid \lambda \ge 0\}$ is continuous at x. Then M is a sun.

Amir and Deutsch [4] proved that the space C[0, 1] satisfies (4). Therefore, in C[0, 1] a Chebyshev set with a continuous metric projection is a sun; i.e., (3) is true for X = C[0, 1].

In the following lemma we prove that (4) is true for c_0 , establishing (3) for $X = c_0$.

Proposition 1. A Chebyshev set in c_0 with a continuous metric projection is a sun.

Further, we will prove that if M is an approximatively compact Chebyshev set in c_0 , $H \in cAff_{\omega-k}$, $k \in \mathbb{N}$, then $M \cap H$ is an approximatively compact Chebyshev sun in c_0 ; in particular, $M \cap H$ is a Chebyshev sun in H (see Theorem 1 below).

Proof of Proposition 1. We will establish (4) and then apply Lemma B.

Let $p \in S$. Let us take y = -p. From (1) it is clear that $\mathring{K}(p, -p) = \mathring{K}(p, 0)$. To prove (4) we need to check that

$$p \notin \overline{S \cap \mathring{K}(p, 0)}.$$
(5)

Suppose the contrary. Let

$$y^{(n)} \in S, \quad y^{(n)} \to p, \quad y^{(n)} \in \mathring{K}(p, 0).$$
 (6)

Let $p = (1, ..., 1, p_{k+1}, ...)$, where $|p_j| < 1$, $j \ge k + 1$. Then from the inclusion $y^{(n)} \in \mathring{K}(p, 0) = \{z \mid z_j < 1 \text{ for all } j = 1, ..., k\}$ it follows that $y_j^{(n)} < 1$ for $1 \le j \le k$.

From the convergence $y^{(n)} \rightarrow p$ it follows that $y_j^{(n)} > 0$ for all $n \ge n_1$ and for $1 \le j \le k$. Further, there is an $n_0 > n_1$ such that $||y^{(n)} - p|| < 1/8$ for all $n > n_0$. Also, there is an N_2 such that $|p_N| < 1/4$ for all $N > N_2$. Now we establish that there exists N_1 such that $|y_N^{(n)}| < 1/2$ for all $N > N_1$ and $n > n_0$. To prove that statement, assume the contrary. Then we will get

$$\frac{1}{4} = \frac{1}{2} - \frac{1}{4} \leqslant |y_N^{(n)}| - |p_N| \leqslant |y_N^{(n)} - p_N| \leqslant ||y^{(n)} - p|| \leqslant \frac{1}{8},$$

a contradiction. Now for $n \ge n_0$ we have the following estimates for the coordinates of $y^{(n)}$: $0 < y_j^{(n)} < 1$ for $1 \le j \le k$, $|y_j^{(n)}| < 1/2$ for $j > N_1$. Since $y^{(n)} \in S$, for every $n \ge n_0$ there is a $v \in (k + 1, N_1)$ such that $|y_v^{(n)}| = 1$. Then,

$$||y^{(n)} - p|| \ge \min_{k+1 \le v < N_1} |1 - |p_v|| > C > 0, \quad n > n_0,$$

contradicting the convergence $y^{(n)} \rightarrow p$ in (6). Proposition 1 is proved. \Box

For a coordinate affine subspace $H \subset c_0$ and $z \in c_0$ by $\operatorname{pr}_H z$ we define the natural coordinate projection of z onto H. A natural norm $|| \cdot ||_H$ on H is induced by the ℓ^{∞} -norm of c_0 in the following way: (1) H is set to be a linear space by fixing an arbitrary element $\theta \in H$ as H's zero element; (2) the norm $|| \cdot ||_H$ is defined as Minkowski's functional of the convex set $B(\theta, 1) \cap H$ with respect to θ .

Given an affine subspace $H \subset c_0$, its closed ball will be denoted by $B_H(x,r)$, the open ball by $\mathring{B}_H(x,r)$, the sphere by $S_H(x,r)$ and, respectively, the open supporting cone by $\mathring{K}_H(x,y)$ (here $x, y \in H, x \neq y$ and r > 0). Under this notation it is clear that $B_H(x,r) = B(x,r) \cap H$, $\mathring{B}_H(x,r) = \mathring{B}(x,r) \cap H$, $S_H(x,r) = S(x,r) \cap H$ and $\mathring{K}_H(x,y) = \mathring{K}(x,y) \cap H$.

The following geometrical somehow unexpected result will play an essential role below.

Lemma 1. Let M be an approximatively compact Chebyshev set in c_0 and $H \in cAff_{\omega-1}(c_0)$. By H^+, H^- we denote two non-overlapping open halfspaces with boundary H. Suppose that $\mathring{B}_H(x,r) \cap M = \emptyset$ for some $x \in H$ and r > 0. Let $\mathring{B}_H^{\pm} = \{u \in H^{\pm} \mid \operatorname{pr}_H u \in \mathring{B}_H(x,r)\}$. Then either $\mathring{B}_H^+ \cap M = \emptyset$ or $\mathring{B}_H^- \cap M = \emptyset$.

Proof of Lemma 1. Without loss of generality we assume that r = 1, x = 0, $0 \in H$ and that $H = \{y \mid y_1 = 0\}$. As usual, let $e^1 = (1, 0, 0, ...)$. Let $f \in (c_0)^*$ be a functional such that Ker f = H and ||f|| = 1 (in our assumptions $f(y) = y_1$). Then $H^{\pm} = \{u \in c_0 \mid f(u) \ge 0\}$.

Suppose the contrary: $\mathring{B}_H(0,1) \cap M = \emptyset$, but

$$\mathring{B}_{H}^{+} \cap M \neq \emptyset \quad \text{and} \quad \mathring{B}_{H}^{-} \cap M \neq \emptyset. \tag{7}$$

We denote

$$\bar{\alpha} = \inf\{f(u) \mid u \in \mathring{B}_{H}^{+} \cap M\}, \quad \underline{\alpha} = \sup\{f(u) \mid u \in \mathring{B}_{H}^{-} \cap M\}.$$
(8)

Let us prove that

$$\bar{\alpha} - \underline{\alpha} \geqslant 2. \tag{9}$$

Assuming that (9) is false, we set $\beta = (\bar{\alpha} + \underline{\alpha})/2$. Then it is clear that $\beta + 1 > \bar{\alpha}$, $\beta - 1 < \underline{\alpha}$. This yields that sup $\mathring{B}(\beta e^1, 1) = \beta + 1 > \bar{\alpha}$, inf $\mathring{B}(\beta e^1, 1) = \beta - 1 < \underline{\alpha}$, whence

$$\mathring{B}(\beta e^{1}, 1) \cap (M \cap \mathring{B}^{+}) \neq \emptyset \quad \text{and} \quad \mathring{B}(\beta e^{1}, 1) \cap (M \cap \mathring{B}^{-}) \neq \emptyset.$$
(10)

Clearly, $\mathring{B}_{H}(0,1)$ separates $\mathring{B}(0,1)$. Therefore, since $\mathring{B}_{H}(0,1) \subset \mathring{B}(\beta e^{1},1)$ and $\mathring{B}_{H}(0,1) \cap M = \emptyset$, from (10) it follows that $\mathring{B}(\beta e^{1},1) \cap M$ is not connected. But this is a contradiction, since, by Wulbert's theorem [17,18, Theorem 4.1], a Chebyshev set M with a continuous metric projection is always \mathring{V} -connected (i.e., $M \cap \mathring{B}(y,\rho)$ connected for any choice $y \in X$ and $\rho > 0$). Therefore, our assumption that $\overline{\alpha} - \underline{\alpha} < 2$ was false and so (9) is proved.

Now from (9) and (8) it follows that

 $\mathring{B}((\bar{\alpha}-1)e^1,1)\cap M=\emptyset.$

Here we also used (7) to ensure that $\bar{\alpha} < \infty$.

Moreover, (8) yields that there is a sequence $(y^{(n)}) \subset M$ such that

$$||(\bar{\alpha}-1)e^{1}-y^{(n)}|| \to 1 = \rho(\bar{\alpha}-1,M).$$

Since *M* is approximatively compact, $(y^{(n)})$ has a subsequence converging to some $\hat{y} \in M$. Clearly, $\hat{y} \in P_M(\bar{\alpha} - 1)e^1$, $f(\hat{y}) = \hat{y}_1 = \bar{\alpha}$.

Finally, since by Proposition 1, M is a sun, from Lemma A it follows that $\mathring{K}(\hat{y}, (\bar{\alpha} - 1)e^1) \cap M = \emptyset$. Here $\mathring{K}(\hat{y}, (\bar{\alpha} - 1)e^1) = \{z \mid z_1 < \bar{\alpha}, \varepsilon_j z_j < \varepsilon_j \hat{y_j}, j \in I\}$, where $\varepsilon_j = \operatorname{sign} \hat{y_j}, I = \{i \mid |\hat{y_i}| = 1\}$. Then, clearly, $\mathring{B}_H^- \subset \mathring{K}(\hat{y}, (\bar{\alpha} - 1)e^1)$, whence $\mathring{B}_H^- \cap M = \emptyset$, contradicting (7). Lemma 1 is proved. \Box

3. Intersection of Chebyshev sets with coordinate hyperplanes and layers of coordinate hyperplanes

In this section we study approximative properties of an intersection of a Chebyshev set $M \subset c_0$ with a layer of coordinate affine hyperplanes and with other convex sets C. It turns out that the intersection $M \cap C$ has "good" approximative properties if C is a layer of coordinate subspaces of finite codimension in c_0 (or finite intersection of such layers); in particular, if $C \in cAff_{\omega-k}(c_0)$ is a coordinate subspace of finite codimension k. On the other hand, simple examples show that $M \cap C$ may have "bad" approximative properties if C is a subspace which is not coordinate in c_0 (see Remark 2 below).

222

Theorem 1. Let M be an approximatively compact Chebyshev set in c_0 and let $H \in cAff_{\omega-k}(c_0), k \in \mathbb{N}$, be a coordinate subspace of finite codimension. If $M \cap H \neq \emptyset$, then $M \cap H$ is a Chebyshev set in H, which is approximatively compact.

This result will be obtained as a corollary from a more general Theorem 2 below. The similar result is also true in $\ell^{\infty}(n)$ (see [3]).

From Theorem 1 and Proposition 1 we have

Corollary 1. Let M be an approximatively compact Chebyshev set in c_0 and let $H \in cAff_{\omega-k}(c_0), k \in \mathbb{N}$. Then $M \cap H$ is a Chebyshev sun in c_0 ; in particular, $M \cap H$ is a Chebyshev sun in H.

Let $H \in cAff_{\omega-1}(c_0)$ be a coordinate hyperplane, $0 \in H$, $h \in (c_0)^*$, ||h|| = 1, $h|_H = 0$, $a, b \in \mathbb{R}$, $a \leq b$. Then by

$$h_{a,b} = h_{a,b}(H) = \{ x \in c_0 \mid a \leqslant h(x) \leqslant b \}$$
(11)

we denote the layer of coordinate affine hyperplanes between a and b, with respect to the h. Clearly, $h_{0,0} = H$, $h_{-\infty,\infty} = c_0$.

Theorem 2. Let *M* be an approximatively compact Chebyshev set in c_0 and let $h_{a,b}$ be a layer of coordinate hyperplanes as in (11). Then, if $M \cap h_{a,b} \neq \emptyset$,

$$h_{a,b} \subset \mathsf{T}(M \cap h_{a,b}) \cap \mathsf{AC}(M \cap h_{a,b}). \tag{12}$$

In other words, every point from the layer $h_{a,b}$ has a unique nearest point from the set $(M \cap h_{a,b})$.

Simple examples show that in general $P_M x \neq P_{(M \cap h_{a,b})} x$ for $x \in h_{a,b}$.

Proof of Theorem 2. Let $x \in h_{a,b} \setminus M$. Without loss of generality we assume that x = 0, $\rho(0, M \cap h_{a,b}) = 1$, $H = \{y \mid y_1 = 0\}$ and that $h(e^1) = 1$. It is clear that

$$\mathring{B}_{H}(0,1) \cap M = \emptyset \quad \text{and} \quad \mathring{B}(0,1) \cap (M \cap h_{a,b}) = \emptyset.$$
(13)

At first we will prove that $0 \in AC(M \cap h_{a,b})$. Let $(y^{(n)}) \in M \cap h_{a,b}$ be a minimising sequence for 0: $||y^{(n)}|| \to 1$.

Suppose the contrary: $0 \notin AC(M \cap h_{a,b})$; i.e., $(y^{(n)})$ does not have a convergent subsequence to a point from $M \cap h_{a,b}$. This implies that (compare with (13))

$$\ddot{B}(0,1) \cap M \neq \emptyset,\tag{14}$$

for otherwise the sequence $(y^{(n)})$ would be minimising from M for 0. Since $0 \in AC(M)$, this sequence has to have a convergent subsequence. Clearly, the cluster point will be in $M \cap h_{a,b}$, a contradiction with our assumption that $0 \notin AC(M \cap h_{a,b})$.

Without loss of generality we assume that the intersection $\vec{B}(0,1) \cap M$ from (14) lies in $\vec{B}_{H} := \{y \mid h(y) < 0\}.$

Now we can apply Lemma 1: from (13) and (14) it follows that

$$B_H^+ \cap M = \emptyset. \tag{15}$$

Let us denote $\alpha = \sup h(M \cap \mathring{B}_{H}^{-})$. Then $-1 < \alpha \leq a \leq 0$. Let us fix $\hat{x} = (1 + \alpha)e^{1}$ and consider the ball $\mathring{B} + \hat{x} = \mathring{B}(\hat{x}, 1)$. It is clear that $\mathring{B}(\hat{x}, 1) \subset \mathring{B}_{H}^{+}$, therefore from (15) we conclude that $\mathring{B}(\hat{x}, 1) \cap M = \emptyset$. Let us prove that

$$||\hat{x} - y^{(n)}|| \to 1, \tag{16}$$

i.e., that $y^{(n)}$ is a minimising sequence from $M \cap h_{a,b}$ for \hat{x} .

Since $||y^{(n)}|| \to 1$, for any $\varepsilon > 0$ there is an N > 0 such that $1 \leq ||y^{(n)}|| < 1 + \varepsilon$ for every n > N. Further, $y^{(n)} \in h_{a,b}$ implies that

$$|y_j^{(n)}| < 1 + \varepsilon$$
 for every $j \ge 2$ and $a \le y_1^{(n)} < 1 + \varepsilon$. (17)

Therefore,

$$||\hat{x} - y^{(n)}|| = ||y^{(n)} - (1 + \alpha)e_1|| = \max\left\{|y_1^{(n)} - (1 + \alpha)|, \sup_{j \ge 2} |y_j^{(n)}|\right\} < 1 + \varepsilon,$$

where the last inequality follows from (17) and the inequalities $-1 < \alpha \le a \le 0$. This is our claim in (16). Now $y^{(n)}$ is a minimising sequence from M for \hat{x} . Since $M \in (AC)$, it follows that $y^{(n)}$ has a convergent subsequence. Clearly, its cluster point lies in $M \cap h_{a,b}$. This contradicts our assumption that $y^{(n)}$ does not have subsequences converging to points from $M \cap h_{a,b}$. Thus we have proved the first half of (12): $h_{a,b} \subset AC(M \cap h_{a,b})$.

The fact that $h_{a,b} \subset T(M \cap h_{a,b})$ will be proved in the same way. Supposing that $y', y'' \in P_{(M \cap h_{a,b})}0$, $y' \neq y''$, we similarly have that $y', y'' \in P_{(M \cap h_{a,b})}\hat{x}$ for \hat{x} defined in above. Now $\mathring{B}(\hat{x}, 1) \cap M = \emptyset$ and, therefore, $y', y'' \in P_M \hat{x}$. This contradicts our assumption on M to be a Chebyshev set. Theorem 2 is proved. \Box

It is natural to consider an intersection of a finite number of coordinate layers of the form (11):

$$G = \bigcap_{k=1}^{n} h_{a_k, b_k}(H_k), \tag{18}$$

where $H_k \in cAff_{\omega-1}(c_0)$, $a_k, b_k \in \mathbb{R}$, k = 1, ..., n. We will call such an intersection a *coordinate box*. Similar arguments as in the proof of Theorem 2 give the following generalisation of Theorem 2 for coordinate boxes in c_0 .

Theorem 3. Let M be an approximatively compact Chebyshev set in c_0 and let G be a coordinate box of the form (18). Then, if $M \cap G \neq \emptyset$,

$$G \subset \mathcal{T}(M \cap G) \cap \mathcal{AC}(M \cap G). \tag{19}$$

224

In other words, every point from the box G has a unique nearest point from the set $(M \cap G)$.

Remark 1. Theorem 1 says that an intersection of a approximatively compact Chebyhsev set $M \subset c_0$ with a coordinate affine subspace $P \in cAff_{\omega-k}(c_0)$ of finite codimension is an approximatively compact Chebyshev set in P. It is unknown for the author whether the same remains true if codim $P = \infty$. (The answer is positive for any P with dim P = 1 which is easy to verify.)

Remark 2. The geometric form of the sets (11) and (18) is important. Sets $h_{a,b}$ and G cannot be replaced by arbitrary convex sets. It is easy to construct a Chebyshev set $M \subset \ell^{\infty}(2)$ and a convex set G such that $M \cap G$ is not acyclic (therefore, M is never a Chebyshev set for any norm on G) (i.e., $G \not\subset T(M \cap G)$). Let us consider $M = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid x_1 x_2 = 1, x_1 > 0\}$ and a non-coordinate line $G = \{x_1 + x_1 = 3\}$. Then $G \cap M$ is disconnected and therefore is never a Chebyshev set in G for any norm or non-symmetric norm on G.

4. Characterisation of Chebyshev sets in c_0 and $\ell^{\infty}(n)$

At first we note that Chebyshev sets in $\ell^{\infty}(n)$ and approximatively compact Chebyshev sets in C(Q) with compact metrisable Q were characterised by Dunham [10] using the properties of regularity and zero-sign compatibility.

In [2,3] we presented the following geometrical characterisation of Chebyshev sets in $\ell^{\infty}(n)$.

Theorem A. A set M is a Chebyshev set in $\ell^{\infty}(n)$ if and only if the following three conditions are satisfied:

- (a) *M* is closed;
- (b) $M \cap H$ is connected for every k = 1, ..., n and $H \in cAff_k(\mathbb{R}^n)$;
- (c) for every k = 2, ..., n, $H \in cAff_k(\mathbb{R}^n)$ and $Q \in cAff_{k-1}(H)$ the condition that Q is a locally supporting hyperplane for M in H implies that $Q \in Tan_H(M)$ and $Q \cap M$ is a singleton.

In particular, this result gave a positive answer to the question of whether the intersection of a Chebyshev set in $\ell^{\infty}(n)$ with a coordinate subspace H will be a Chebyshev set in H.

Let us recall that suns in $\ell^{\infty}(n)$ were characterized by Berens and Hetzelt [6], see also Brown [9]; strict suns in $\ell^{\infty}(n)$ were geometrically described by Brosowski [7] and the author [1].

Now we give a similar characterisation for approximatively compact Chebyshev sets in c_0 .

Theorem 4. Let $M \subset c_0$ be approximatively compact. Then M is a Chebyshev set in c_0 if and only if the following two conditions are satisfied:

- (a) the set $M \cap H$ is connected for all $k \in \mathbb{Z}_+$ and $H \in cAff_{\omega-k}(c_0)$; and
- (b) for all $k \in \mathbb{Z}_+$, $H \in cAff_{\omega-k}(c_0)$ and $Q \in cAff_{\omega-(k+1)}(H)$ the condition $Q \in locTan_H(M)$ implies that $Q \in Tan_H(M)$ and $Q \cap M$ is a singleton.

Proof of Theorem 4. The "ONLY IF" part. Let $M \subset c_0$ be an approximatively compact Chebyshev set and let $H \in \operatorname{cAff}_{\omega-k}(c_0)$ be such that $\emptyset \neq M \cap H$. Theorem 2 shows that $M \cap H$ is an approximatively compact Chebyshev set in H. Therefore, the metric projection $P_M : H \to M \cap H$ is continuous [17, Corollary 2.2]. Now the connectedness of $M \cap H$ follows from a classical result [18] that a Chebyshev set with a continuous metric projection is \mathring{V} -connected, and, therefore, arcwise-connected; see [17,11, Theorem 4.1]).

Let $k \in \mathbb{Z}_+$, $H \in \operatorname{cAff}_{\omega-k}(c_0)$ and let $Q \in \operatorname{cAff}_{\omega-(k+1)}(H)$, $Q \in \operatorname{locTan}_H(M)$. Without loss of generality we assume that $0 \in Q$. Let $x \in Q \cap M$ and let $\mathcal{O}(x)$ be a convex neighbourhood of x in H such that Q is a hyperplane of support to the set $M \cap \mathcal{O}(x)$ at x in H. Then $\mathring{B}(x,r) \subset \mathcal{O}(x)$ for some r > 0. Let φ be a continuous linear functional on H with Ker $\varphi = Q$. Let us denote $Q^- = \{z \in H \mid \varphi(z) < 0\}$. Changing if necessary φ with $-\varphi$ we have $Q^- \cap (M \cap \mathcal{O}(x)) = \emptyset$.

Let us fix a point $\xi \in Q^-$ such that $\operatorname{pr}_Q \xi = x$ and $||x - \xi|| < r/2$. Then $\mathring{B}_H(\xi, ||\xi - x||) \subset (Q^- \cap \mathcal{O}(x))$. By Theorem 2 $M \cap H$ is a Chebyshev set in H and by Corollary 1 $M \cap H$ is a sun. From Lemma A it follows that $\mathring{K}_H(x,\xi) \cap M = \emptyset$. Since $\operatorname{pr}_H \xi = x$, we see that x is a point of smoothness of the ball $B_H(\xi, ||\xi - x||)$, whence $\mathring{K}_H(x,\xi)$ is an open half-space that is equal to Q^- . Therefore $\mathring{K}_H(x,\xi) \cap M = \emptyset$ and we have proved that Q is a supporting hyperplane to the set $M \cap H$ at x.

To prove the uniqueness of the intersection $M \cap Q$, recall that

$$\mathring{K}_{H}(x,\xi) = \bigcup_{\alpha>0} \mathring{B}_{H}(\alpha\xi + (1-\alpha)x, \alpha||x-\xi||),$$
(20)

whence x is a unique nearest point from $M \cap H$ to every point $\alpha \xi + (1 - \alpha)x$, where $\alpha > 0$. Further, since $\operatorname{bd} \mathring{K}_H(x, \xi) = Q$ and $M \cap H$ is a Chebyshev set, we finally obtain that $M \cap Q = \{x\}$. Thus (b) is fulfilled.

The "IF" part. For an approximatively compact set M in c_0 , having assumed that (a) and (b) are fulfilled, let us prove that M is a Chebyshev set in c_0 .

Let $x \notin M$. We will prove that x has a unique nearest point from M. Without loss of generality we put x = 0, $\rho(0, M) = 1$.

Since *M* is approximatively compact, $P_M z \neq \emptyset$ for every $z \in c_0$ (see [17, Proposition 2.2]). Let $y \in P_M 0$. The fact that all the faces of the unit ball of c_0 are faces of finite codimension will play a key role in our proof.

For $z \in S(0, 1)$ let E(z) denote (a unique) face of B such that $z \in \text{ri } E(z)$. It is easy to see that $E(z) = \{\varepsilon = (\varepsilon^k) | \varepsilon^k = 1, \text{ if } z^k = 1; \varepsilon^k = -1, \text{ if } z^k = -1; \varepsilon^k \in [-1, 1], \text{ if } |z^k| < 1\}$. Let us also denote $\mathcal{F}(z) = \{F | F \text{ is a proper face of } B \text{ such that } z \in F \text{ and } z \notin \text{ri } F\}$.

Let us consider the convex body $K(y, 0) = \operatorname{cl} \mathring{K}(y, 0)$. From (20) it follows that the only faces that K(y, 0) has are the conical hulls $\operatorname{cone}(y, F)$, where either $F \in \mathcal{F}(y)$ or F = E(y). Theorem 18.2 from [15] states that for a convex body C

$$\operatorname{rb} C = \bigcup \{\operatorname{ri} F \mid F \text{ is a proper face of } C\}.$$
(21)

It follows that

$$\operatorname{bd} \mathring{K}(y,0) = \operatorname{cone}(y, E(y)) \cup \bigcup_{F \in \mathcal{F}(y)} \operatorname{cone}(y, \operatorname{ri} F).$$
(22)

Let $y \in P_M 0$ be such the magnitude

$$d = \min\{\operatorname{codim} E(z) \mid z \in P_M 0\}$$
(23)

is minimal. This definition implies that if F is a face of B and codim F < d, then ri $F \cap M = \emptyset$.

Let us prove that

$$P_M 0 = \{y\}.$$
 (24)

1. Let d = 1. Fix $H = c_0$, $Q = \operatorname{aff} E(y)$. Since $B \cap M = \emptyset$ and $y \in \operatorname{ri} E(y)$, then Q is locally tangential hyperplane to the set M at the point y. By condition (b), Q is (globally) tangential hyperplane to the set M at x and $Q \cap M = \{x\}$. This clearly implies that $P_M 0 = \{y\}$. In the case d = 1 the statement (24) is proved.

2. Let d > 1. Without loss of generality we assume $y = (1, 1, ..., 1, \xi_{d+1}, ...),$ $|\xi_i| < 1, i \ge d + 1$. Then $\mathring{K}(y, 0) = \{z \mid z_1 < 1, ..., z_d < 1\}.$

Let us show that

$$\operatorname{aff} E(y) \cap M = \{y\}.$$

$$(25)$$

To prove (25) fix $\Phi \in \mathcal{F}(y)$ with codim $\Phi = d - 1$ (it is clear that such a face Φ exists) and then apply condition (b) to the pair $H = \operatorname{aff} \Phi \in \operatorname{cAff}_{\omega-d+1}(c_0)$, $Q = \operatorname{aff} E(y) \in \operatorname{cAff}_{\omega-d}(c_0)$ at point y.

Since by (23) ri $\Phi \cap M = \emptyset$ and $y \in ri E(y) \subset rb \Phi$, we have

cone(ri
$$\Phi$$
, y) $\cap M = \emptyset$ and aff $E(y) \cap M = \{y\},$ (26)

which proves (25).

Further, by induction on codimension j = 1, ..., d - 1 of the face $F \in \mathcal{F}(y) \setminus \{E(y)\}$ let us prove that

$$\operatorname{cone}(\operatorname{ri} F, y) \cap M = \emptyset$$
, and $\operatorname{cone}(F, y) \cap M = \{y\}$ (i_j)

is true for every $j = d - 1, \dots, 1$.

The statement (i_{d-1}) is proved in (26). Suppose that (i_j) is true for every $j = d-2, \ldots, v+1$. We need to establish (i_v) . Fix $F \in \mathcal{F}(y)$, codim F = v.

Without loss of generality we take

$$F = \{(1, ..., 1, \eta_{\nu+1}, ...)\}, \quad |\eta_{\mu}| \leq 1, \quad \mu \geq \nu + 1.$$

Then cone(ri F, y) = {(1, ..., 1, $\alpha \eta_{v+1} + 1 - \alpha, ..., \alpha \eta_{d+1} + (1 - \alpha) \xi_{d+1}, ...)$ }, $\alpha \ge 0$. Now let $G_1, ..., G_N$ be all (v + 1)-codimensional faces from $\mathcal{F}(y)$. It is clear that $G_{\mu} \subset rb F$ and $E(y) \subset G_{\mu} \cap F$, $\mu = 1, ..., N$. From (22), (21) and from the structure of G_{μ} it follows that

$$\operatorname{rb}\operatorname{cone}(\operatorname{ri} F, y) = \bigcup_{\mu=1,\dots,N} \operatorname{cone}(G_{\mu}, y)$$
(27)

and, further, from (27) and $(i_{\nu+1})$ we have

$$rb \operatorname{cone}(ri F, y) \cap M = \{y\}.$$
(28)

Since v < d - 1, from (23) it follows that ri $F \cap M = \emptyset$. Now, from the connectedness of the intersection $M \cap \operatorname{aff} F$ (condition (a)) and from the fact that ri $F \cap M = \emptyset$, applying (28) we have:

$$\operatorname{cone}(\operatorname{ri} F, y) \cap M = \emptyset. \tag{29}$$

Finally, from (28) and (29) we get (i_v) .

Thus, (i_j) is fulfilled for every j = 1, ..., d - 1.

Now (22), (25) and $(i_1), ..., (i_{d-1})$ imply that

bd
$$K(y,0) \cap M = \{y\}.$$
 (30)

Applying condition (a) to $H = c_0$ and using that $B \cap M = \emptyset$, from (30) we finally obtain that

$$\check{K}(y,0) \cap M = \emptyset$$
 and $\operatorname{bd} \check{K}(y,0) \cap M = \{y\}.$

This shows that $P_M 0 = \{y\}$. Theorem 4 is proved. \Box

Example. Let a = (1, 1/2, 1/3, ...), b = (-1/2, -1/3, -1/4, ...). Then the line segment M = [0, a] and the non-convex union $[0, a] \cup [0, b]$ of two-line segments serve as examples of boundedly compact Chebyshev sets in c_0 .

References

- [1] A.R. Alimov, Geometrical characterization of strict suns in $\ell^{\infty}(n)$, Mat. Zametki 70 (1) (2001) 3–11 (in Russian; English translation in: Math. Notes. 70 (1) (2001) 3–10).
- [2] A.R. Alimov, Characterisation of Chebyshev sets in $\ell^{\infty}(n)$, International Conference on Kolmogorov and Contemporary Mathematics, Moscow, June 16–21, 2003, Abstracts, Moscow, 2003. pp. 133–134.
- [3] A.R. Alimov, Geometrical structure of Chebyshev sets in $\ell^{\infty}(n)$, Funct. Anal. Appl. 38 (3) (2004) 3–15.
- [4] D. Amir, F. Deutsch, Suns, moons and quasi-polyhedra, J. Approx. Theory 6 (1972) 176-201.
- [5] V.S. Balagansky, L.P. Vlasov, Problem of convexity of Chebyshev sets, Uspekhi, Mat. Nauk 51 (6) (312) (1996) 125–188 (in Russian; English translation in: Russian Math. Surveys 51(6) (312) (1996) 1127–1190).
- [6] H. Berens, L. Hetzelt, Die Metrische Struktur der Sonnen in $\ell^{\infty}(n)$, Aequationes Math. 27 (1984) 274–287.
- [7] D. Braess, Geometrical characterizations for nonlinear uniform approximation, J. Approx. Theory 11 (1974) 260–274.
- [8] B. Brosowski, F. Deutsch, J. Lambert, P.D. Morris, Chebyshev sets which are not suns, Math. Ann. 212 (1974) 89–101.
- [9] A.L. Brown, Suns in normed linear spaces which are finite dimensional, Math. Ann. 279 (1987) 81–101.

228

- [10] Ch.B. Dunham, Characterizability and uniqueness in real Chebyshev approximation, J. Approx. Theory 2 (1969) 374–383.
- [11] M.I. Karlov, I.G. Tsar'kov, Convexity and connectedness of Chebyshev sets and suns, Fund. Prikl. Mat. 3 (4) (1997) 967–978 (in Russian).
- [12] S.V. Konyagin, On approximative properties of arbitrary closed sets in Banach spaces, Fund. Prikl. Mat. 3 (4) (1997) 979–989 (in Russian).
- [13] E.V. Oschman, Chebyshev sets and continuity of a metric projection, Izv. Vysšh. Učebn. Zaved, Mat. 9 (1970) 78–82 (in Russian).
- [14] I.G. Tsarkov, Local homogeneity of sets of uniqueness, Mat. Zametki 45 (5) (1989) 121–123 (in Russian; English translation in: Math. Notes. 45 (5) (1989)).
- [15] R. Tyrrell Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
- [16] L.P. Vlasov, Chebyshev sets and some their generalizations, Mat. Zametki 3 (1) (1968) 59–69 (in Russian; English translation in: Math. Notes. 3 (1968), 36–41).
- [17] L.P. Vlasov, Approximative properties of sets in normed linear spaces, Uspekhi Mat. Nauk 28 (6) (1973) 3–66 (in Russian; English translation in: Russian Math. Surveys 28(6) (1973) 1–66).
- [18] D.E. Wulbert, Continuity of metric projections, Trans. Amer. Math. Soc. 134 (2) (1968) 335-341.