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Abstract

A subset MCX of a normed linear space X is a Chebyshev set if, for every xAX ; the set of
all nearest points from M to x is a singleton. We obtain a geometrical characterisation of

approximatively compact Chebyshev sets in c0: Also, given an approximatively compact

Chebyshev set M in c0 and a coordinate affine subspace HCc0 of finite codimension, if

M-Ha|; then M-H is a Chebyshev set in H; where the norm on H is induced from c0:
r 2004 Published by Elsevier Inc.
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1. Introduction

A subset |aMCX of a normed linear space ðX ; jj � jjÞ is a Chebyshev set if, for
every xAX ; the set PMx ¼ fyAM j jjx � yjj ¼ rðx;MÞg of its nearest points from M

consists of one point. Here rðx;MÞ ¼ infzAM jjx � zjj is the distance from x to M:
The best general references here are [5,17].

The paper contains two main results. Theorem 4 characterises approximatively
compact Chebyshev sets in c0 in terms of their intersections with coordinate affine
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subspaces of finite codimension. Theorems 1–3 establish that an intersection of an
approximatively compact Chebyshev set in c0 with a coordinate affine subspace H of
finite codimension or with a finite intersection H of coordinate half-spaces preserves
its approximative properties with respect to H: Similar results for cNðnÞ were
recently obtained by the author [2,3].

To formulate the main results of the paper the notion of a coordinate subspace
will play an important role. Thus, we give the following definitions:

cAffo�kðc0Þ (kAZþ) will denote the set of all coordinate affine subspaces of c0 of
finite codimension k; i.e., affine subspaces H which are parallel to a correspondent
face F of the unit ball, codim F ¼ k: In other words, H ¼ fxAc0 j xi1 ¼ c1;y; xik ¼
ckg for some fixed set of indices i1;y; ik and set of constants c1;y; ck;

cAffkðc0Þ ðkANÞ will denote the set of all coordinate affine subspaces of c0 of finite
dimension k (see [3]); i.e., cAffkðc0Þ consists of affine subspaces of the following
form: linfei1 ;y; eik j 1pi1o?oikoNg þ x; xAc0; here e1; e2;y is the natural

basis of c0:
If m4k and HAcAffo�kðc0Þ; then QAcAffo�mðHÞ means that QAcAffo�mðc0Þ

and QCH:
Further, let MCc0; H be a coordinate affine subspace of c0 and Q be a hyperplane

in H: Then Q is said to be locally tangential to M in H (we write QALocTan
H

ðMÞ) if
there exist a point xAH-M and its neighbourhood OðxÞ in H such that Q is a
hyperplane of support to the set M-OðxÞ in H: The fact that the hyperplane Q is a
supporting hyperplane to the set M-H in subspace H will be denoted by
QATanHðMÞ:

A point xAX is said to be a point of approximative compactness for a set MCX

if, for every sequence ðynÞnANCM such that jjx � ynjj-rðx;MÞ; there is a

convergent subsequence ðynk
Þ-yAM: A set MCX is approximatively compact

(AC), if every point xAX is a point of approximative compactness for M: By
ACðMÞ ¼ ACX ðMÞ we will denote the set of all points of approximative
compactness for the set M in the space X :

Also, let us denote TðMÞ ¼ fxAX j card PMx ¼ 1g; i.e., the set of points from X

that have a unique nearest point from M; (here the letter ‘‘T’’ comes from the
antiquated spelling of Chebyshev as Tschebysheff). Now a set M is Chebyshev in X ;
if TðMÞ ¼ X : (See [5] and [12] for density and categorical properties of TðMÞ;
ACðMÞ and for other characteristics of approximatively compact sets.)

The importance of coordinate subspaces for approximation theory was shown in
[3] for X ¼ cNðnÞ: Here we obtain similar results for c0: Theorem 1 states that for an
approximatively compact Chebyshev set M in c0 and for HAcAffo�kðc0Þ; kAZþ; if
M-Ha|; then

HCTðM-HÞ;

i.e., every point from the subspace H has a unique nearest point from the set ðM-HÞ:
In particular, M-H is an approximatively compact Chebyshev sun (see Section 2) in
H; the norm on H being induced from cN-norm on c0: Theorems 2 and 3 state similar
results for a finite intersection of coordinate affine half-spaces of finite codimension.
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The main result of the paper is Theorem 4 where a characterisation of
approximatively compact Chebyshev sets in c0 is given.

Theorem 4. Let MCc0 be approximatively compact. Then M is a Chebyshev set in c0
if and only if the following two conditions are satisfied:

(a) the set M-H is connected for all kAZþ and HAcAffo�kðc0Þ; and

(b) for all kAZþ; HAcAffo�kðc0Þ and QAcAffo�ðkþ1ÞðHÞ the condition

QAlocTanHðMÞ implies that QATanHðMÞ and Q-M is a singleton.

The similar characterisation for Chebyshev sets in cNðnÞ was obtained in [2,3].
The paper has the following structure. In Section 2 necessary definitions and

auxiliary results are given, in Section 3 we study approximative properties of
intersections of approximatively compact Chebyshev sets in c0 with coordinate
hyperplanes and layers of coordinate hyperplanes (Theorems 1–3). In Section 4 we
present characterisations of approximatively compact Chebyshev sets in c0 and in
cNðnÞ (Theorem 4 and Theorem A).

2. Auxiliary results

As usual, if xAX and r40; then Bðx; rÞ; B̊ðx; rÞ and Sðx; rÞ denote closed, open
ball and sphere with centre x and radius r; respectively; to simplify notation we will

also denote B ¼ Bð0; 1Þ; B̊ ¼ B̊ð0; 1Þ; S ¼ Sð0; 1Þ:
For a convex set CCX by ri C; rb C; coneðy;CÞ we denote relative interior,

relative boundary and conical hull of C with respect to the point y: coneðy;CÞ ¼
fac þ ð1� aÞy j aX0; cACg:

The notion of a sun, introduced by Efimov and Stechkin, proved to be important
in approximation theory. Let us recall that a set MCX is a sun if, for every point
xAX \M; there exists a point yAPMx such that yAPM ½ð1� lÞy þ lx
 for all lX0:
The following lemma establishes an important property of suns: a point not lying

in a sun can be separated from it by a convex cone, namely, by the supporting cone

K̊ðy; xÞ; two equivalent definitions of which are given below (here x; yAX ; xay)
[13,17, Chapter 3]:

K̊ðy; xÞ ¼
[
l40

B̊ðlx þ ð1� lÞy; ljjx � yjjÞ; ð1Þ

K̊ðy; xÞ ¼ fzAX j ½z; y
-B̊ðx; jjx � yjjÞa|g: ð2Þ

Lemma A (Oschman [13], see also Vlasov [17, Chapter 3]). A set M is a sun in X if

and only if, for all xAX \M; there exists yAPMx such that K̊ðy; xÞ-M ¼ |:

It is a well-known fact that every Chebyshev set in a finite-dimensional normed
linear space is a sun (Chebyshev sets which are suns are also called Chebyshev suns);
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in infinite-dimensional spaces this is no longer true (see e.g. [8,11,17, Chapter 4]).
However, under additional assumptions on a Chebyshev set M or on a space X it is
possible to prove solar properties of MCX : The classical result of Vlasov [17,
Theorem 4.13] establishes solar properties of boundedly compact (BC) Chebyshev
sets in Banach spaces. (ABset M is boundedly compact if M-Bðx; rÞ is compact for
every x and r40) Moreover, a locally compact Chebyshev set with a continuous
metric projection is a sun [11,16], see also [14]. (A set M is locally compact (LC) if,
for every xAM; there is an e40 such that Bðx; eÞ-M is compact.)
It is clear that ðBCÞCðLCÞ-ðACÞ; ðACÞgðLCÞ; ðLCÞgðACÞ: We note that an

approximatively compact Chebyshev set M has a continuous metric projection [17,
Corollary 2.2].

It is interesting to know in which spaces X

An approximatively compact Chebyshev set is a sun: ð3Þ

The following result (see e.g. [17, Theorem 4.18]) allows us to establish (3) in
spaces which satisfy the following condition (4).

Lemma B (Brosowski and Deutsch). Suppose that the space X satisfies the condition

8pAS K̊ðp; 0ÞC
[

fK̊ðp; yÞ j yAS; peS-K̊ðp; yÞg: ð4Þ

Given a Chebyshev set MCX ; suppose also that for each xeM the restriction of the metric

projection PM to the ray flx þ ð1� lÞPMx j lX0g is continuous at x. Then M is a sun.

Amir and Deutsch [4] proved that the space C½0; 1
 satisfies (4). Therefore, in
C½0; 1
 a Chebyshev set with a continuous metric projection is a sun; i.e., (3) is true
for X ¼ C½0; 1
:

In the following lemma we prove that (4) is true for c0; establishing (3) for X ¼ c0:

Proposition 1. A Chebyshev set in c0 with a continuous metric projection is a sun.

Further, we will prove that if M is an approximatively compact Chebyshev set in c0;
HAcAffo�k; kAN; then M-H is an approximatively compact Chebyshev sun in c0; in

particular, M-H is a Chebyshev sun in H (see Theorem 1 below).

Proof of Proposition 1. We will establish (4) and then apply Lemma B.

Let pAS: Let us take y ¼ �p: From (1) it is clear that K̊ðp;�pÞ ¼ K̊ðp; 0Þ: To prove
(4) we need to check that

peS-K̊ðp; 0Þ: ð5Þ

Suppose the contrary. Let

yðnÞAS; yðnÞ-p; yðnÞAK̊ðp; 0Þ: ð6Þ

Let p ¼ ð1;y; 1; pkþ1;yÞ; where jpjjo1; jXk þ 1: Then from the inclusion

yðnÞAK̊ðp; 0Þ ¼ fz j zjo1 for all j ¼ 1;y; kg it follows that y
ðnÞ
j o1 for 1pjpk:
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From the convergence yðnÞ-p it follows that y
ðnÞ
j 40 for all nXn1 and for 1pjpk:

Further, there is an n04n1 such that jjyðnÞ � pjjo1=8 for all n4n0: Also, there is an
N2 such that jpN jo1=4 for all N4N2: Now we establish that there exists N1 such

that jyðnÞ
N jo1=2 for all N4N1 and n4n0: To prove that statement, assume the

contrary. Then we will get

1

4
¼ 1

2
� 1

4
pjyðnÞ

N j � jpN jpjyðnÞ
N � pN jpjjyðnÞ � pjjp1

8
;

a contradiction. Now for nXn0 we have the following estimates for the coordinates

of yðnÞ: 0oy
ðnÞ
j o1 for 1pjpk; jyðnÞ

j jo1=2 for j4N1: Since yðnÞAS; for every nXn0

there is a nAðk þ 1;N1Þ such that jyðnÞ
n j ¼ 1: Then,

jjyðnÞ � pjjX min
kþ1pnoN1

j1� jpnjj4C40; n4n0;

contradicting the convergence yðnÞ-p in (6). Proposition 1 is proved. &

For a coordinate affine subspace HCc0 and zAc0 by prHz we define the natural
coordinate projection of z onto H: A natural norm jj � jjH on H is induced by the cN-

norm of c0 in the following way: (1) H is set to be a linear space by fixing an arbitrary
element yAH as H’s zero element; (2) the norm jj � jjH is defined as Minkowski’s

functional of the convex set Bðy; 1Þ-H with respect to y:
Given an affine subspace HCc0; its closed ball will be denoted by BHðx; rÞ; the

open ball by B̊Hðx; rÞ; the sphere by SHðx; rÞ and, respectively, the open supporting

cone by K̊Hðx; yÞ (here x; yAH; xay and r40). Under this notation it is clear that

BHðx; rÞ ¼ Bðx; rÞ-H; B̊Hðx; rÞ ¼ B̊ðx; rÞ-H; SHðx; rÞ ¼ Sðx; rÞ-H and

K̊Hðx; yÞ ¼ K̊ðx; yÞ-H:
The following geometrical somehow unexpected result will play an essential role

below.

Lemma 1. Let M be an approximatively compact Chebyshev set in c0 and

HAcAffo�1ðc0Þ: By Hþ;H� we denote two non-overlapping open halfspaces with

boundary H. Suppose that B̊Hðx; rÞ-M ¼ | for some xAH and r40: Let B̊7
H ¼

fuAH7 j prHuAB̊Hðx; rÞg: Then either B̊þ
H-M ¼ | or B̊�

H-M ¼ |:

Proof of Lemma 1. Without loss of generality we assume that r ¼ 1; x ¼ 0; 0AH and

that H ¼ fy j y1 ¼ 0g: As usual, let e1 ¼ ð1; 0; 0;yÞ: Let fAðc0Þ� be a functional

such that Ker f ¼ H and jjf jj ¼ 1 (in our assumptions f ðyÞ ¼ y1). Then H7 ¼
fuAc0 j f ðuÞ_0g:

Suppose the contrary: B̊Hð0; 1Þ-M ¼ |; but

B̊þ
H-Ma| and B̊�

H-Ma|: ð7Þ
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We denote

%a ¼ infff ðuÞ j uAB̊þ
H-Mg;

%
a ¼ supff ðuÞ j uAB̊�

H-Mg: ð8Þ

Let us prove that

%a�
%
aX2: ð9Þ

Assuming that (9) is false, we set b ¼ ð%aþ
%
aÞ=2: Then it is clear that bþ 14%a;

b� 1o
%
a: This yields that sup B̊ðbe1; 1Þ ¼ bþ 14%a; inf B̊ðbe1; 1Þ ¼ b� 1o

%
a; whence

B̊ðbe1; 1Þ-ðM-B̊þÞa| and B̊ðbe1; 1Þ-ðM-B̊�Þa|: ð10Þ

Clearly, B̊Hð0; 1Þ separates B̊ð0; 1Þ: Therefore, since B̊Hð0; 1ÞCB̊ðbe1; 1Þ and

B̊Hð0; 1Þ-M ¼ |; from (10) it follows that B̊ðbe1; 1Þ-M is not connected. But this
is a contradiction, since, by Wulbert’s theorem [17,18, Theorem 4.1], a Chebyshev set

M with a continuous metric projection is always V̊-connected (i.e., M-B̊ðy; rÞ
connected for any choice yAX and r40). Therefore, our assumption that %a�

%
ao2

was false and so (9) is proved.
Now from (9) and (8) it follows that

B̊ðð%a� 1Þe1; 1Þ-M ¼ |:

Here we also used (7) to ensure that %aoN:

Moreover, (8) yields that there is a sequence ðyðnÞÞCM such that

jjð%a� 1Þe1 � yðnÞjj-1 ¼ rð%a� 1;MÞ:

Since M is approximatively compact, ðyðnÞÞ has a subsequence converging to some

ŷAM: Clearly, ŷAPMð%a� 1Þe1; f ðŷÞ ¼ ŷ1 ¼ %a:
Finally, since by Proposition 1, M is a sun, from Lemma A it follows that

K̊ðŷ; ð%a� 1Þe1Þ-M ¼ |: Here K̊ðŷ; ð%a� 1Þe1Þ ¼ fz j z1o%a; ejzjoej ŷj; jAIg; where

ej ¼ sign ŷj ; I ¼ fi j jŷij ¼ 1g: Then, clearly, B̊�
HCK̊ðŷ; ð%a� 1Þe1Þ; whence B̊�

H-M ¼
|; contradicting (7). Lemma 1 is proved. &

3. Intersection of Chebyshev sets with coordinate hyperplanes and layers of coordinate

hyperplanes

In this section we study approximative properties of an intersection of a
Chebyshev set MCc0 with a layer of coordinate affine hyperplanes and with other
convex sets C: It turns out that the intersection M-C has ‘‘good’’ approximative
properties if C is a layer of coordinate subspaces of finite codimension in c0 (or finite
intersection of such layers); in particular, if CAcAffo�kðc0Þ is a coordinate subspace
of finite codimension k: On the other hand, simple examples show that M-C may
have ‘‘bad’’ approximative properties if C is a subspace which is not coordinate in c0
(see Remark 2 below).
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Theorem 1. Let M be an approximatively compact Chebyshev set in c0 and let

HAcAffo�kðc0Þ; kAN; be a coordinate subspace of finite codimension. If M-Ha|;
then M-H is a Chebyshev set in H, which is approximatively compact.

This result will be obtained as a corollary from a more general Theorem 2 below.
The similar result is also true in cNðnÞ (see [3]).

From Theorem 1 and Proposition 1 we have

Corollary 1. Let M be an approximatively compact Chebyshev set in c0 and let

HAcAffo�kðc0Þ; kAN: Then M-H is a Chebyshev sun in c0; in particular, M-H is a

Chebyshev sun in H.

Let HAcAffo�1ðc0Þ be a coordinate hyperplane, 0AH; hAðc0Þ�; jjhjj ¼ 1; hjH ¼ 0;

a; bAR; apb: Then by

ha;b ¼ ha;bðHÞ ¼ fxAc0 j aphðxÞpbg ð11Þ

we denote the layer of coordinate affine hyperplanes between a and b; with respect to
the h: Clearly, h0;0 ¼ H; h�N;N ¼ c0:

Theorem 2. Let M be an approximatively compact Chebyshev set in c0 and let ha;b be a

layer of coordinate hyperplanes as in (11). Then, if M-ha;ba|;

ha;bCTðM-ha;bÞ-ACðM-ha;bÞ: ð12Þ

In other words, every point from the layer ha;b has a unique nearest point from the set

ðM-ha;bÞ:

Simple examples show that in general PMxaPðM-ha;bÞx for xAha;b:

Proof of Theorem 2. Let xAha;b\M: Without loss of generality we assume that x ¼ 0;

rð0;M-ha;bÞ ¼ 1; H ¼ fy j y1 ¼ 0g and that hðe1Þ ¼ 1: It is clear that

B̊Hð0; 1Þ-M ¼ | and B̊ð0; 1Þ-ðM-ha;bÞ ¼ |: ð13Þ

At first we will prove that 0AACðM-ha;bÞ: Let ðyðnÞÞAM-ha;b be a minimising

sequence for 0: jjyðnÞjj-1:

Suppose the contrary: 0eACðM-ha;bÞ; i.e., ðyðnÞÞ does not have a convergent

subsequence to a point from M-ha;b: This implies that (compare with (13))

B̊ð0; 1Þ-Ma|; ð14Þ

for otherwise the sequence ðyðnÞÞ would be minimising from M for 0: Since
0AACðMÞ; this sequence has to have a convergent subsequence. Clearly, the cluster
point will be in M-ha;b; a contradiction with our assumption that 0eACðM-ha;bÞ:

Without loss of generality we assume that the intersection B̊ð0; 1Þ-M from (14)

lies in B̊�
H :¼ fy j hðyÞo0g:
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Now we can apply Lemma 1: from (13) and (14) it follows that

B̊þ
H-M ¼ |: ð15Þ

Let us denote a ¼ sup hðM-B̊�
HÞ: Then �1oapap0: Let us fix x̂ ¼ ð1þ aÞe1 and

consider the ball B̊ þ x̂ ¼ B̊ðx̂; 1Þ: It is clear that B̊ðx̂; 1ÞCB̊þ
H ; therefore from (15) we

conclude that B̊ðx̂; 1Þ-M ¼ |: Let us prove that

jjx̂ � yðnÞjj-1; ð16Þ

i.e., that yðnÞ is a minimising sequence from M-ha;b for x̂:

Since jjyðnÞjj-1; for any e40 there is an N40 such that 1pjjyðnÞjjo1þ e for every
n4N: Further, yðnÞAha;b implies that

jyðnÞ
j jo1þ e for every jX2 and apy

ðnÞ
1 o1þ e: ð17Þ

Therefore,

jjx̂ � yðnÞjj ¼ jjyðnÞ � ð1þ aÞe1jj ¼ max jyðnÞ
1 � ð1þ aÞj; sup

jX2

jyðnÞ
j j

( )
o1þ e;

where the last inequality follows from (17) and the inequalities �1oapap0: This is

our claim in (16). Now yðnÞ is a minimising sequence from M for x̂: Since MAðACÞ;
it follows that yðnÞ has a convergent subsequence. Clearly, its cluster point lies in

M-ha;b: This contradicts our assumption that yðnÞ does not have subsequences

converging to points from M-ha;b: Thus we have proved the first half of (12):

ha;bCACðM-ha;bÞ:
The fact that ha;bCTðM-ha;bÞ will be proved in the same way. Supposing

that y0; y00APðM-ha;bÞ0; y0ay00; we similarly have that y0; y00APðM-ha;bÞx̂

for x̂ defined in above. Now B̊ðx̂; 1Þ-M ¼ | and, therefore, y0; y00APMx̂:
This contradicts our assumption on M to be a Chebyshev set. Theorem 2
is proved. &

It is natural to consider an intersection of a finite number of coordinate layers of
the form (11):

G ¼
\n

k¼1

hak ;bk
ðHkÞ; ð18Þ

where HkAcAffo�1ðc0Þ; ak; bkAR; k ¼ 1;y; n: We will call such an intersection a
coordinate box. Similar arguments as in the proof of Theorem 2 give the following
generalisation of Theorem 2 for coordinate boxes in c0:

Theorem 3. Let M be an approximatively compact Chebyshev set in c0 and let G be a

coordinate box of the form (18). Then, if M-Ga|;

GCTðM-GÞ-ACðM-GÞ: ð19Þ
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In other words, every point from the box G has a unique nearest point from the set

ðM-GÞ:

Remark 1. Theorem 1 says that an intersection of a approximatively compact

Chebyhsev set MCc0 with a coordinate affine subspace PAcAffo�kðc0Þ of finite

codimension is an approximatively compact Chebyshev set in P. It is unknown for the
author whether the same remains true if codim P ¼ N: (The answer is positive for
any P with dim P ¼ 1 which is easy to verify.)

Remark 2. The geometric form of the sets (11) and (18) is important. Sets ha;b

and G cannot be replaced by arbitrary convex sets. It is easy to construct a
Chebyshev set MCcNð2Þ and a convex set G such that M-G is not
acyclic (therefore, M is never a Chebyshev set for any norm on G)

(i.e., GgTðM-GÞ). Let us consider M ¼ fx ¼ ðx1; x2ÞAR2 j x1x2 ¼ 1; x140g
and a non-coordinate line G ¼ fx1 þ x1 ¼ 3g: Then G-M is disconnected
and therefore is never a Chebyshev set in G for any norm or non-symmetric
norm on G:

4. Characterisation of Chebyshev sets in c0 and cNðnÞ

At first we note that Chebyshev sets in cNðnÞ and approximatively
compact Chebyshev sets in CðQÞ with compact metrisable Q were
characterised by Dunham [10] using the properties of regularity and zero-sign
compatibility.

In [2,3] we presented the following geometrical characterisation of Chebyshev sets
in cNðnÞ:

Theorem A. A set M is a Chebyshev set in cNðnÞ if and only if the following three

conditions are satisfied:

(a) M is closed;
(b) M-H is connected for every k ¼ 1;y; n and HAcAffkðRnÞ;
(c) for every k ¼ 2;y; n; HAcAffkðRnÞ and QAcAffk�1ðHÞ the condition that Q is a

locally supporting hyperplane for M in H implies that QATanHðMÞ and Q-M is

a singleton.

In particular, this result gave a positive answer to the question of whether the
intersection of a Chebyshev set in cNðnÞ with a coordinate subspace H will be a
Chebyshev set in H:

Let us recall that suns in cNðnÞ were characterized by Berens and Hetzelt [6], see
also Brown [9]; strict suns in cNðnÞ were geometrically described by Brosowski [7]
and the author [1].

Now we give a similar characterisation for approximatively compact Chebyshev
sets in c0:

ARTICLE IN PRESS
A.R. Alimov / Journal of Approximation Theory 129 (2004) 217–229 225



Theorem 4. Let MCc0 be approximatively compact. Then M is a Chebyshev set in c0
if and only if the following two conditions are satisfied:

(a) the set M-H is connected for all kAZþ and HAcAffo�kðc0Þ; and

(b) for all kAZþ; HAcAffo�kðc0Þ and QAcAffo�ðkþ1ÞðHÞ the condition

QAlocTanHðMÞ implies that QATanHðMÞ and Q-M is a singleton.

Proof of Theorem 4. The ‘‘only if’’ part. Let MCc0 be an approximatively compact

Chebyshev set and let HAcAffo�kðc0Þ be such that |aM-H: Theorem 2 shows
that M-H is an approximatively compact Chebyshev set in H: Therefore, the
metric projection PM : H-M-H is continuous [17, Corollary 2.2]. Now the
connectedness of M-H follows from a classical result [18] that a Chebyshev set with

a continuous metric projection is V̊-connected, and, therefore, arcwise-connected; see
[17,11, Theorem 4.1]).

Let kAZþ; HAcAffo�kðc0Þ and let QAcAffo�ðkþ1ÞðHÞ; QAlocTanHðMÞ: Without

loss of generality we assume that 0AQ: Let xAQ-M and let OðxÞ be a convex
neighbourhood of x in H such that Q is a hyperplane of support to the set M-OðxÞ
at x in H: Then B̊ðx; rÞCOðxÞ for some r40: Let j be a continuous linear functional
on H with Ker j ¼ Q: Let us denote Q� ¼ fzAH j jðzÞo0g: Changing if necessary

j with �j we have Q�-ðM-OðxÞÞ ¼ |:

Let us fix a point xAQ� such that prQx ¼ x and jjx � xjjor=2: Then B̊Hðx; jjx�
xjjÞCðQ�-OðxÞÞ: By Theorem 2 M-H is a Chebyshev set in H and by Corollary 1

M-H is a sun. From Lemma A it follows that K̊Hðx; xÞ-M ¼ |: Since prHx ¼ x;

we see that x is a point of smoothness of the ball BHðx; jjx� xjjÞ; whence K̊Hðx; xÞ is
an open half-space that is equal to Q�: Therefore K̊Hðx; xÞ-M ¼ | and we have
proved that Q is a supporting hyperplane to the set M-H at x:

To prove the uniqueness of the intersection M-Q; recall that

K̊Hðx; xÞ ¼
[
a40

B̊Hðaxþ ð1� aÞx; ajjx � xjjÞ; ð20Þ

whence x is a unique nearest point from M-H to every point axþ ð1� aÞx; where
a40: Further, since bd K̊Hðx; xÞ ¼ Q and M-H is a Chebyshev set, we finally
obtain that M-Q ¼ fxg: Thus (b) is fulfilled.

The ‘‘if’’ part. For an approximatively compact set M in c0; having assumed that
(a) and (b) are fulfilled, let us prove that M is a Chebyshev set in c0:

Let xeM: We will prove that x has a unique nearest point from M: Without loss
of generality we put x ¼ 0; rð0;MÞ ¼ 1:

Since M is approximatively compact, PMza| for every zAc0 (see [17, Proposition
2.2]). Let yAPM0: The fact that all the faces of the unit ball of c0 are faces of finite
codimension will play a key role in our proof.

For zASð0; 1Þ let EðzÞ denote (a unique) face of B such that zAri EðzÞ: It is easy to

see that EðzÞ ¼ fe ¼ ðekÞ j ek ¼ 1; if zk ¼ 1; ek ¼ �1; if zk ¼ �1; ekA½�1; 1
; if

jzkjo1g: Let us also denote FðzÞ ¼ fF j F is a proper face of B such that zAF and
zeri Fg:
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Let us consider the convex body Kðy; 0Þ ¼ cl K̊ðy; 0Þ: From (20) it follows that the
only faces that Kðy; 0Þ has are the conical hulls coneðy;FÞ; where either FAFðyÞ or
F ¼ EðyÞ: Theorem 18.2 from [15] states that for a convex body C

rb C ¼ ,fri F j F is a proper face of Cg: ð21Þ
It follows that

bd K̊ðy; 0Þ ¼ coneðy;EðyÞÞ,
[

FAFðyÞ
coneðy; ri FÞ: ð22Þ

Let yAPM0 be such the magnitude

d ¼ minfcodim EðzÞ j zAPM0g ð23Þ
is minimal. This definition implies that if F is a face of B and codim Fod; then

ri F-M ¼ |:
Let us prove that

PM0 ¼ fyg: ð24Þ

1. Let d ¼ 1: Fix H ¼ c0; Q ¼ affEðyÞ: Since B̊-M ¼ | and yAri EðyÞ; then Q is
locally tangential hyperplane to the set M at the point y: By condition (b), Q is
(globally) tangential hyperplane to the set M at x and Q-M ¼ fxg: This clearly
implies that PM0 ¼ fyg: In the case d ¼ 1 the statement (24) is proved.

2. Let d41: Without loss of generality we assume y ¼ ð1; 1;y; 1; xdþ1;yÞ;
jxijo1; iXd þ 1: Then K̊ðy; 0Þ ¼ fz j z1o1;y; zdo1g:

Let us show that

aff EðyÞ-M ¼ fyg: ð25Þ
To prove (25) fix FAFðyÞ with codimF ¼ d � 1 (it is clear that such a face F

exists) and then apply condition (b) to the pair H ¼ affFAcAffo�dþ1ðc0Þ; Q ¼
affEðyÞAcAffo�dðc0Þ at point y:

Since by (23) riF-M ¼ | and yAri EðyÞCrbF; we have

coneðriF; yÞ-M ¼ | and affEðyÞ-M ¼ fyg; ð26Þ
which proves (25).

Further, by induction on codimension j ¼ 1;y; d � 1 of the face FAFðyÞ\fEðyÞg
let us prove that

coneðri F ; yÞ-M ¼ |; and coneðF ; yÞ-M ¼ fyg ðijÞ
is true for every j ¼ d � 1;y; 1:

The statement ðid�1Þ is proved in (26). Suppose that ðijÞ is true for every j ¼
d � 2;y; nþ 1: We need to establish ðinÞ: Fix FAFðyÞ; codim F ¼ n:

Without loss of generality we take

F ¼ fð1;y; 1; Znþ1;yÞg; jZmjp1; mXnþ 1:

Then coneðri F ; yÞ ¼ fð1;y; 1; aZnþ1 þ 1� a;y; aZdþ1 þ ð1� aÞxdþ1;yÞg; aX0:

Now let G1;y;GN be all ðnþ 1Þ-codimensional faces from FðyÞ: It is clear that
GmCrb F and EðyÞCGm-F ; m ¼ 1;y;N: From (22), (21) and from the structure of
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Gm it follows that

rb coneðri F ; yÞ ¼
[

m¼1;y;N

coneðGm; yÞ ð27Þ

and, further, from (27) and ðinþ1Þ we have

rb coneðri F ; yÞ-M ¼ fyg: ð28Þ

Since nod � 1; from (23) it follows that ri F-M ¼ |: Now, from the connectedness

of the intersection M-affF (condition (a)) and from the fact that ri F-M ¼ |;
applying (28) we have:

coneðri F ; yÞ-M ¼ |: ð29Þ
Finally, from (28) and (29) we get ðinÞ:

Thus, (ij) is fulfilled for every j ¼ 1;y; d � 1:

Now (22), (25) and ði1Þ;y; ðid�1Þ imply that

bd K̊ðy; 0Þ-M ¼ fyg: ð30Þ

Applying condition (a) to H ¼ c0 and using that B̊-M ¼ |; from (30) we finally
obtain that

K̊ðy; 0Þ-M ¼ | and bd K̊ðy; 0Þ-M ¼ fyg:
This shows that PM0 ¼ fyg: Theorem 4 is proved. &

Example. Let a ¼ ð1; 1=2; 1=3;yÞ; b ¼ ð�1=2;�1=3;�1=4;yÞ: Then the line
segment M ¼ ½0; a
 and the non-convex union ½0; a
,½0; b
 of two-line segments
serve as examples of boundedly compact Chebyshev sets in c0:
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