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Abstract

A subset M < X of a normed linear space X is a Chebyshev set if, for every xe X, the set of
all nearest points from M to x is a singleton. We obtain a geometrical characterisation of
approximatively compact Chebyshev sets in ¢y. Also, given an approximatively compact
Chebyshev set M in ¢y and a coordinate affine subspace H <cy of finite codimension, if
M~ H#Q, then M nH is a Chebyshev set in H, where the norm on H is induced from cg.
© 2004 Published by Elsevier Inc.
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1. Introduction

A subset 0= M < X of a normed linear space (X, || -||) is a Chebyshev set if, for
every xe X, the set Py x = {ye M |||x — y|| = p(x, M)} of its nearest points from M
consists of one point. Here p(x, M) = inf.c y||x — z|| is the distance from x to M.
The best general references here are [5,17].

The paper contains two main results. Theorem 4 characterises approximatively
compact Chebyshev sets in ¢y in terms of their intersections with coordinate affine
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subspaces of finite codimension. Theorems 1-3 establish that an intersection of an
approximatively compact Chebyshev set in ¢y with a coordinate affine subspace H of
finite codimension or with a finite intersection H of coordinate half-spaces preserves
its approximative properties with respect to H. Similar results for /*(n) were
recently obtained by the author [2,3].

To formulate the main results of the paper the notion of a coordinate subspace
will play an important role. Thus, we give the following definitions:

cAff,_k(co) (keZ,) will denote the set of all coordinate affine subspaces of ¢y of
finite codimension k; i.e., affine subspaces H which are parallel to a correspondent
face F of the unit ball, codim F = k. In other words, H = {xecy | x;, =1, ..., X;, =
¢} for some fixed set of indices iy, ..., i and set of constants ¢y, ..., ¢;

cAff(co) (keN) will denote the set of all coordinate affine subspaces of ¢ of finite
dimension k (see [3]); i.e., cAffx(co) consists of affine subspaces of the following
form: lin{e;, ...,e; | 1<ij<---<ix<o0}+Xx, xEcp; here e, es, ... is the natural
basis of ¢y.

If m>k and HecAff, r(c), then QecAff, ,,(H) means that QecAff, ,,(co)
and QcH.

Further, let M ¢, H be a coordinate affine subspace of ¢y and Q be a hyperplane
in H. Then Q is said to be locally tangential to M in H (we write Q€ Loc;}"an(M)) if

there exist a point xe H M and its neighbourhood O(x) in H such that Q is a
hyperplane of support to the set M nO(x) in H. The fact that the hyperplane Q is a
supporting hyperplane to the set M nH in subspace H will be denoted by
QeTangy(M).

A point xe X is said to be a point of approximative compactness for a set M c X
if, for every sequence (yn),.ny<=M such that [|x —y,||—p(x, M), there is a
convergent subsequence (y,)—>yeM. A set M cX is approximatively compact
(AC), if every point xe X is a point of approximative compactness for M. By
AC(M)=ACx(M) we will denote the set of all points of approximative
compactness for the set M in the space X.

Also, let us denote T(M) = {xe X | card Py x = 1}; i.e., the set of points from X
that have a unique nearest point from M; (here the letter “T” comes from the
antiquated spelling of Chebyshev as Tschebysheff). Now a set M is Chebyshev in X,
if T(M)=X. (See [5] and [12] for density and categorical properties of T(M),
AC(M) and for other characteristics of approximatively compact sets.)

The importance of coordinate subspaces for approximation theory was shown in
[3] for X = /% (n). Here we obtain similar results for ¢y. Theorem 1 states that for an
approximatively compact Chebyshev set M in ¢y and for H ecAff,, «(co), keZ, if
M H#(), then

HcT(MAH),

i.e., every point from the subspace H has a unique nearest point from the set (M n H).
In particular, M n H is an approximatively compact Chebyshev sun (see Section 2) in
H, the norm on H being induced from /“-norm on ¢y. Theorems 2 and 3 state similar
results for a finite intersection of coordinate affine half-spaces of finite codimension.
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The main result of the paper is Theorem 4 where a characterisation of
approximatively compact Chebyshev sets in ¢ is given.

Theorem 4. Let M < ¢y be approximatively compact. Then M is a Chebyshev set in ¢
if and only if the following two conditions are satisfied:

(a) the set M ~H is connected for all keZ, and H ecAff,_x(co); and
(b) for all keZ,, HecAff, ;(co) and QecAff, .1)(H) the condition
QelocTany (M) implies that Qe Tany (M) and QM is a singleton.

The similar characterisation for Chebyshev sets in /* (n) was obtained in [2,3].

The paper has the following structure. In Section 2 necessary definitions and
auxiliary results are given, in Section 3 we study approximative properties of
intersections of approximatively compact Chebyshev sets in ¢y with coordinate
hyperplanes and layers of coordinate hyperplanes (Theorems 1-3). In Section 4 we
present characterisations of approximatively compact Chebyshev sets in ¢y and in
/* (n) (Theorem 4 and Theorem A).

2. Auxiliary results

As usual, if xe X and r>0, then B(x,r), B(x,r) and S(x,r) denote closed, open
ball and sphere with centre x and radius r, respectively; to simplify notation we will
also denote B= B(0,1), B= B(0,1), S = 5(0,1).

For a convex set CcX by riC, rb C, cone(y, C) we denote relative interior,
relative boundary and conical hull of C with respect to the point y: cone(y, C) =
{oc+ (1 —a)y|a=0, ce C}.

The notion of a sun, introduced by Efimov and Stechkin, proved to be important
in approximation theory. Let us recall that a set M < X is a sun if, for every point
xe X\M, there exists a point ye Py x such that ye Py[(1 — 1)y + Ax] for all 1>0.

The following lemma establishes an important property of suns: a point not lying
in a sun can be separated from it by a convex cone, namely, by the supporting cone
If(y, x), two equivalent definitions of which are given below (here x,ye X, x#y)
[13,17, Chapter 3]:

K(y,x) = | BUx+ (1= )y, 2lx =yl (1)
>0
K(y,x) = {ze X [ [z,5] 0 B(x, [|x — yI|) #0}. (2)

Lemma A (Oschman [13], see also Vlasov [17, Chapter 3]). A set M is a sun in X if
and only if, for all xe X\M, there exists ye Pyx such that K(y,x)\M = 0.

It is a well-known fact that every Chebyshev set in a finite-dimensional normed
linear space is a sun (Chebyshev sets which are suns are also called Chebyshev suns);
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in infinite-dimensional spaces this is no longer true (see e.g. [8,11,17, Chapter 4]).
However, under additional assumptions on a Chebyshev set M or on a space X it is
possible to prove solar properties of M < X. The classical result of Vlasov [17,
Theorem 4.13] establishes solar properties of boundedly compact (BC) Chebyshev
sets in Banach spaces. (A ~set M is boundedly compact if M n B(x, r) is compact for
every x and r>0) Moreover, a locally compact Chebyshev set with a continuous
metric projection is a sun [11,16], see also [14]. (A set M is locally compact (LC) if,
for every xe M, there is an ¢>0 such that B(x,&) n M is compact.)

It is clear that (BC)<=(LC)n (AC), (AC)z (LC), (LC)z (AC). We note that an
approximatively compact Chebyshev set M has a continuous metric projection [17,
Corollary 2.2].

It is interesting to know in which spaces X

An approximatively compact Chebyshev set is a sun. (3)

The following result (see e.g. [17, Theorem 4.18]) allows us to establish (3) in
spaces which satisfy the following condition (4).

Lemma B (Brosowski and Deutsch). Suppose that the space X satisfies the condition

VpeS K(p,0)= | {K(p,y)|yeS, p¢SnK(p,y)}. (4)

Given a Chebyshev set M < X, suppose also that for each x ¢ M the restriction of the metric
projection Py to the ray {Ax + (1 — 1) Pyx | A=0} is continuous at x. Then M is a sun.

Amir and Deutsch [4] proved that the space C|0, 1] satisfies (4). Therefore, in
C[0, 1] a Chebyshev set with a continuous metric projection is a sun; i.e., (3) is true
for X = C[0, 1].

In the following lemma we prove that (4) is true for ¢, establishing (3) for X = ¢y.

Proposition 1. A Chebyshev set in ¢y with a continuous metric projection is a sun.

Further, we will prove that if M is an approximatively compact Chebyshev set in cy,
HecAff, i, keN, then M ~ H is an approximatively compact Chebyshev sun in cg; in
particular, M~ H is a Chebyshev sun in H (see Theorem 1 below).

Proof of Proposition 1. We will establish (4) and then apply Lemma B.
Let peS. Let us take y = —p. From (1) it is clear that K(p, —p) = K(p,0). To prove
(4) we need to check that

PESNK(p,0). (5)
Suppose the contrary. Let
yes, yWop, yWeK(p,0). (6)

Let p=(1,...,1,pks1,...), where |pj/<l, j=k+1. Then from the inclusion
y(”)elf(p,o):{z|zj<l for all j=1,...,k} it follows that y}”)<1 for 1<j<k.
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From the convergence y — p it follows that yj(") >0 for all n=n; and for 1 <j<k.

Further, there is an 19> n; such that |[y") — p||<1/8 for all n>ny. Also, there is an
N, such that |py|<1/4 for all N> N,. Now we establish that there exists N such

that |y§\’,'>|<l /2 for all N>N; and n>ny. To prove that statement, assume the
contrary. Then we will get

1
4

n n n 1
<bWI = lpwl<li —pvl< I = pli<g

Bl
ST

a contradiction. Now for n>ny we have the following estimates for the coordinates
of y: 0<yj(”)<1 for 1<j<k, |y/(")|<1/2 for j>N,. Since y" e S, for every n>mnj
there is a ve (k + 1, Ny) such that [y\")| = 1. Then,

(n) _ > 1 _
Y™ =pll= min |1 —|p|>C>0, n>no,

contradicting the convergence ") —p in (6). Proposition 1 is proved. [

For a coordinate affine subspace H —¢j and ze ¢y by pryz we define the natural

coordinate projection of z onto H. A natural norm || - ||; on H is induced by the /*-
norm of ¢y in the following way: (1) H is set to be a linear space by fixing an arbitrary
element 0e H as H’s zero element; (2) the norm || - ||, is defined as Minkowski’s

functional of the convex set B(6, 1) n H with respect to 6.
Given an affine subspace H < ¢y, its closed ball will be denoted by By (x,r), the

open ball by By (x, r), the sphere by Sy (x,r) and, respectively, the open supporting
cone by Ky (x,y) (here x,ye H, x#y and r>0). Under this notation it is clear that
Bu(x,r) = B(x,r)nH,  Byu(x,r)=B(x,r)nH, Sy(x,r)=S(x,r)nH and
IéH(xvy) = Ko'(x,y)r\H.

The following geometrical somehow unexpected result will play an essential role
below.

Lemma 1. Let M be an approximatively compact Chebyshev set in ¢y and
HecAff, ((co). By H, H™ we denote two non-overlapping open halfspaces with
boundary H. Suppose that éH(x, oM =0 for some xe H and r>0. Let B;—’, =
{ue H* | pryue By (x,r)}. Then either Bjy "M =0 or B, n M = 0.

Proof of Lemma 1. Without loss of generality we assume that r = 1, x =0,0e€ H and
that H = {y|y; = 0}. As usual, let ¢! = (1,0,0,...). Let fe(cy)” be a functional
such that Kerf = H and ||[f]| =1 (in our assumptions f(y) = y;). Then H* =
{ueco|f(u)20}.

Suppose the contrary: EH(O, 1)nM =0, but

BiaM#0 and By M#0. (7)
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We denote
g =inf{f(u) |ueBj;n M}, o=sup{f(u)|ueB;nM}. (8)
Let us prove that
a—o=2. 9)

Assuming that (9) is false, we set f = (& + ¢)/2. Then it is clear that f+ 1 >4,
B — 1<q. This yields that sup B(fe', 1) = f + 1 >4, inf B(fe', 1) =  — 1 <g, whence

B(pe', 1) n(M~B")#0 and B(fe',1)n(MnB")#0. (10)

Clearly, Bpy(0,1) separates B(0,1). Therefore, since By (0,1)cB(fe',1) and
By (0,1)n M =0, from (10) it follows that B(fe', 1) M is not connected. But this
is a contradiction, since, by Wulbert’s theorem [17,18, Theorem 4.1], a Chebyshev set
M with a continuous metric projection is always V-connected (i.e., M mé(y,p)
connected for any choice ye X and p>0). Therefore, our assumption that ¢ — ¢ <2

was false and so (9) is proved.
Now from (9) and (8) it follows that

B((@—1e', 1)nM = 0.

Here we also used (7) to ensure that §< oo.
Moreover, (8) yields that there is a sequence (")) M such that

1@ De' =y =1 = p(a—1,M).

Since M is approximatively compact, () has a subsequence converging to some
yeM. Clearly, e Py(a—1)e!, f(¥) = ) = &

Finally, since by Proposition 1, M is a sun, from Lemma A it follows that
K7, (@ —1)e')nM = 0. Here K(¥,(d— 1)e') = {z|z1<d, ¢z;<e¥;, jel}, where
¢ = sign ;, I = {i|[;| = 1}. Then, clearly, B;; < K(J, (@ — 1)e'), whence B n M =
0, contradicting (7). Lemma 1 is proved. [

3. Intersection of Chebyshev sets with coordinate hyperplanes and layers of coordinate
hyperplanes

In this section we study approximative properties of an intersection of a
Chebyshev set M =c¢y with a layer of coordinate affine hyperplanes and with other
convex sets C. It turns out that the intersection M n C has “good” approximative
properties if C is a layer of coordinate subspaces of finite codimension in ¢y (or finite
intersection of such layers); in particular, if CecAff,_(co) is a coordinate subspace
of finite codimension k. On the other hand, simple examples show that M n C may
have ““bad” approximative properties if C is a subspace which is not coordinate in ¢
(see Remark 2 below).
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Theorem 1. Let M be an approximatively compact Chebyshev set in ¢y and let
H ecAff, 1(cy), keN, be a coordinate subspace of finite codimension. If M ~ H #0,
then M nH is a Chebyshev set in H, which is approximatively compact.

This result will be obtained as a corollary from a more general Theorem 2 below.
The similar result is also true in /® (n) (see [3]).
From Theorem 1 and Proposition 1 we have

Corollary 1. Let M be an approximatively compact Chebyshev set in co and let
HecAff,_;(cy), keN. Then M ~H is a Chebyshev sun in cy; in particular, M " H is a
Chebyshev sun in H.

Let HecAff,_1(cy) be a coordinate hyperplane, 0e H, he(c)", ||h]| =1, hly =0,
a,beR, a<h. Then by

hap = hap(H) ={xe€co | a<h(x)<b} (11)

we denote the layer of coordinate affine hyperplanes between a and b, with respect to
the h. Clearly, hog = H, h_ o, o = co.

Theorem 2. Let M be an approximatively compact Chebyshev set in cy and let h, ), be a
layer of coordinate hyperplanes as in (11). Then, if M N\h,,#0,

hap €T(M O hyp) "AC(M N hyyp). (12)

In other words, every point from the layer h,, has a unique nearest point from the set
(Mﬂha.b).

Simple examples show that in general Py x# Pyp, )X for xehyp.

Proof of Theorem 2. Let xeh,;\M. Without loss of generality we assume that x = 0,
p(0, M h,p) =1, H={y|y =0} and that h(e') = 1. It is clear that

Bu(0,1)AnM =0 and B(0,1)n(Mnhp) = 0. (13)

At first we will prove that 06 AC(M nhyy). Let (y™)e M nh,;, be a minimising
sequence for 0: ||y™||— 1.

Suppose the contrary: 0¢ AC(M nh,y); i.e., (¥") does not have a convergent
subsequence to a point from M nh,y. This implies that (compare with (13))

B(0,1)n M #0, (14)

for otherwise the sequence (y) would be minimising from M for 0. Since
0e AC(M), this sequence has to have a convergent subsequence. Clearly, the cluster
point will be in M Nnh,p, a contradiction with our assumption that 0¢ AC(M Nhgp).

Without loss of generality we assume that the intersection B°(0, 1)n M from (14)
lies in B = {y | h(y)<0}.
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Now we can apply Lemma 1: from (13) and (14) it follows that
Bi,nM = 0. (15)

Let us denote o = sup /(M N By;). Then —1 <a<a<0. Let us fix ¥ = (1 + a)e' and
consider the ball B + X = B(x, 1). It is clear that B(X, 1) = B}, therefore from (15) we
conclude that B(¥,1)nM = 0. Let us prove that

1€ =y -1, (16)

i.e., that y is a minimising sequence from M nhyy for X.
Since ||y || — 1, for any &> 0 there is an N >0 such that 1 <||y"|| <1 + ¢ for every
n> N. Further, y €h,p implies that

|J’J(‘n)|<1+8 for every j>2 and a<)!" <1 +e. (17)

Therefore,
1=y = [ = (1 + e =ma"{lyi"> = (1), sup |y,§”)l}<1 o
]z

where the last inequality follows from (17) and the inequalities —1 <a<a<0. This is
our claim in (16). Now y is a minimising sequence from M for ¥. Since M € (AC),
it follows that ) has a convergent subsequence. Clearly, its cluster point lies in
M N~ h,p. This contradicts our assumption that ™ does not have subsequences
converging to points from M nh,,. Thus we have proved the first half of (12):
hap ©AC(M N hayp).

The fact that h,p<T(M nh,p) will be proved in the same way. Supposing
that ',y €Paran,,)0, V'#y", we similarly have that )',y"ePyrap,,)x
for X defined in above. Now E’(J@, 1)nM =0 and, therefore, )',y"ePyX.
This contradicts our assumption on M to be a Chebyshev set. Theorem 2
is proved. [

It is natural to consider an intersection of a finite number of coordinate layers of
the form (11):

G= m hakvbk(Hk)’ (18)
k=1

where HjyecAff, i(cy), ar,breR, k=1, ...,n. We will call such an intersection a
coordinate box. Similar arguments as in the proof of Theorem 2 give the following
generalisation of Theorem 2 for coordinate boxes in c¢.

Theorem 3. Let M be an approximatively compact Chebyshev set in ¢y and let G be a
coordinate box of the form (18). Then, if M N G#0,

GcT(MnG)NnAC(M N G). (19)
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In other words, every point from the box G has a unique nearest point from the set
(MnG).

Remark 1. Theorem 1 says that an intersection of a approximatively compact
Chebyhsev set M <cy with a coordinate affine subspace PecAff,_(cy) of finite
codimension is an approximatively compact Chebyshev set in P. It is unknown for the
author whether the same remains true if codim P = co. (The answer is positive for
any P with dim P = 1 which is easy to verify.)

Remark 2. The geometric form of the sets (11) and (18) is important. Sets h,
and G cannot be replaced by arbitrary convex sets. It is easy to construct a
Chebyshev set M </ (2) and a convex set G such that MG is not
acyclic (therefore, M is never a Chebyshev set for any norm on G)
(.., G&T(MNG)). Let us consider M = {x = (x;,x3)eR?|x;x, =1, x;>0}
and a non-coordinate line G = {x;+x; =3}. Then GnM is disconnected
and therefore is never a Chebyshev set in G for any norm or non-symmetric
norm on G.

4. Characterisation of Chebyshev sets in ¢y and /™ (n)

At first we note that Chebyshev sets in /“(n) and approximatively
compact Chebyshev sets in C(Q) with compact metrisable Q were
characterised by Dunham [10] using the properties of regularity and zero-sign
compatibility.

In [2,3] we presented the following geometrical characterisation of Chebyshev sets
in /% (n).

Theorem A. A set M is a Chebyshev set in £ (n) if and only if the following three
conditions are satisfied:

(a) M is closed,

(b) M H is connected for every k =1, ..., n and H ecAff(R");

(c) forevery k =2, ...,n, HecAffy(R") and QecAfty_,(H) the condition that Q is a
locally supporting hyperplane for M in H implies that Qe Tany (M) and QM is
a singleton.

In particular, this result gave a positive answer to the question of whether the
intersection of a Chebyshev set in /* (n) with a coordinate subspace H will be a
Chebyshev set in H.

Let us recall that suns in /% (n) were characterized by Berens and Hetzelt [6], see
also Brown [9]; strict suns in /® (n) were geometrically described by Brosowski [7]
and the author [1].

Now we give a similar characterisation for approximatively compact Chebyshev
sets in ¢p.
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Theorem 4. Let M < ¢y be approximatively compact. Then M is a Chebyshev set in ¢
if and only if the following two conditions are satisfied:

(a) the set M nH is connected for all ke Z and H e cAff,_i(cy); and
(b) for all keZ,, HecAff, i(cy) and QecAff, g\ (H) the condition
QelocTany (M) implies that Qe Tany (M) and QM is a singleton.

Proof of Theorem 4. The ““ONLY IF” part. Let M < ¢ be an approximatively compact
Chebyshev set and let H ecAff, «(co) be such that O M ~ H. Theorem 2 shows
that M nH is an approximatively compact Chebyshev set in H. Therefore, the
metric projection Py : H—> M nH is continuous [17, Corollary 2.2]. Now the
connectedness of M n H follows from a classical result [18] that a Chebyshev set with
a continuous metric projection is V-connected, and, therefore, arcwise-connected: see
[17,11, Theorem 4.1]).

Let keZ, HecAff, (co) and let QecAff, 1) (H), QelocTany(M). Without
loss of generality we assume that 0e Q. Let xe Qn M and let O(x) be a convex
neighbourhood of x in H such that Q is a hyperplane of support to the set M nO(x)
at x in H. Then B(x, r) = O(x) for some r>0. Let ¢ be a continuous linear functional
on H with Ker ¢ = Q. Let us denote 9~ = {ze H | ¢(z) <0}. Changing if necessary
¢ with —p we have 0~ n(M nO(x)) = 0.

Let us fix a point {€ Q™ such that pryé = x and [|x — &[|<r/2. Then Bu(&,||E -
x|])= (@ nO(x)). By Theorem 2 M n H is a Chebyshev set in H and by Corollary 1
M N H is a sun. From Lemma A it follows that IéH(x, &)nM = 0. Since pryé = x,
we see that x is a point of smoothness of the ball B (¢, ||¢ — x||), whence Ky (x, &) is

an open half-space that is equal to Q. Therefore KOH(x, &N M =0 and we have
proved that Q is a supporting hyperplane to the set M N H at x.
To prove the uniqueness of the intersection M N Q, recall that

K (x, ) = | Bu(eg + (1 - a)x,allx —¢l)), (20)

>0

whence x is a unique nearest point from M n H to every point o + (1 — a)x, where
a>0. Further, since bd Ky (x,&) = Q and M~ H is a Chebyshev set, we finally
obtain that M nQ = {x}. Thus (b) is fulfilled.

The “1F” part. For an approximatively compact set M in ¢y, having assumed that
(a) and (b) are fulfilled, let us prove that M is a Chebyshev set in ¢y.

Let x¢ M. We will prove that x has a unique nearest point from M. Without loss
of generality we put x =0, p(0, M) = 1.

Since M is approximatively compact, Pz #( for every zecq (see [17, Proposition
2.2]). Let ye Py;0. The fact that all the faces of the unit ball of ¢y are faces of finite
codimension will play a key role in our proof.

For ze S(0, 1) let E(z) denote (a unique) face of B such that zeri E(z). It is easy to
see that E(z) ={e= () |k =1, if ZF=1; & =1, if ZF=—1; Fe[-1,1], if
|z|<1}. Let us also denote F(z) = {F | F is a proper face of B such that ze F and
z¢ri F}.
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Let us consider the convex body K(y,0) = cl If(y, 0). From (20) it follows that the
only faces that K(y,0) has are the conical hulls cone(y, F'), where either Fe F(y) or
F = E(y). Theorem 18.2 from [15] states that for a convex body C

rb C = U{ri F | F is a proper face of C}. (21)
It follows that
bd K(y,0) = cone(y, E(y))u U cone(y,ri F). (22)
FeF(y)

Let ye Py0 be such the magnitude
d = min{codim E(z) | ze P)0} (23)
is minimal. This definition implies that if F is a face of B and codim F <d, then

nFAM =0.
Let us prove that

Pu0 = [} (24)

1. Let d = 1. Fix H = ¢y, Q = affE(y). Since BAn M = () and yeri E(y), then Q is
locally tangential hyperplane to the set M at the point y. By condition (b), Q is
(globally) tangential hyperplane to the set M at x and QM = {x}. This clearly
implies that Py0 = {y}. In the case d = 1 the statement (24) is proved.

2. Let d>1. Without loss of generality we assume y = (1,1,...,1,&;.q, ...),
|&| <1, i=d + 1. Then K(y,0) = {z|z; <1, ...,zg<1}.

Let us show that

aft Ep)n M = {y}. (25)

To prove (25) fix ®eF(y) with codim® =d — 1 (it is clear that such a face ¢
exists) and then apply condition (b) to the pair H = aff®ecAff, 4.1(co), O =
aff E(y) ecAff,_4(co) at point y.

Since by (23) ri®nM = 0 and yeri E(y) =rb ®, we have

cone(ri®,y)nM =0 and affE(y)nM = {y}, (26)

which proves (295).
Further, by induction on codimension j = 1, ...,d — 1 of the face Fe F(y)\{E(»)}
let us prove that
cone(ri F,y)nM =0, and cone(F,y)nM = {y} (ij)

is true forevery j=d — 1, ..., 1.

The statement (i;—;) is proved in (26). Suppose that (i;) is true for every j =
d—2,...,v+ 1. We need to establish (i,). Fix FeF(y), codim F = v.

Without loss of generality we take

F:{(lavlvn\f+17)}7 |’7,u|<11 ﬂZV—Fl
Then cone(ri F,y) = {(1, ..., Lo,y +1 =0, ..o,omgyy + (1 —)éyiq,...)}, a=0.

Now let Gy, ...,Gy be all (v+ 1)-codimensional faces from F(y). It is clear that
G,crbFand E(y)cG,nF,p=1,...,N. From (22), (21) and from the structure of
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G, it follows that
rb cone(ri F,y) = U cone(Gy, y) (27)

and, further, from (27) and (i,;;) we have
rbcone(ri F,y)n M = {y}. (28)

Since v<d — 1, from (23) it follows that ri F~n M = . Now, from the connectedness
of the intersection M naffF (condition (a)) and from the fact that ri Fn M = 0§,
applying (28) we have:

cone(ri F,y)n M = 0. (29)

Finally, from (28) and (29) we get (i,).
Thus, (i;) is fulfilled for every j =1, ...,d — 1.
Now (22), (25) and (i}), ..., (iz—1) imply that

bd K(y,0)n M = {y}. (30)

Applying condition (a) to H = ¢ and using that BA M = @, from (30) we finally
obtain that

K(»,00nM =0 and bd K(y,0)nM = {y}.
This shows that Py0 = {y}. Theorem 4 is proved. [

Example. Let a=(1,1/2,1/3,...), b=(-1/2,-1/3,—1/4,...). Then the line
segment M = [0,a] and the non-convex union [0,a]uU|[0,b] of two-line segments
serve as examples of boundedly compact Chebyshev sets in ¢.
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